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To a considerable extent the kinetics of gaseous expansion, i . e . ,  
the change in volume due to the release of gas phase from heavily 
supersaturated solid solutions of gaseous fission Products, are deter- 
mined by the fact that the processes of formation of grains of the new 
phase-gas pores-and the processes of growth and fusion of these pores 
are interrelated. 

The pore size distribution function f (r, p, t) characterizing the 
porosity that develops when a supersaturated solid solution of gaseous 
fission products breaks down can generally be found from the equation 
[1] 
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Here p is the pore radius, r is the radius vector giving the position 
of its center at moment t, yp is the rate of growth of the pore radius, 
u (v, p) is the rate of displacement of the pore, r (r, p, t) is the rate 
of creation of pores of radius p at time t at a point in the material t. 
The term I+ takes into account the change in the distribution function 
due to the fusion of pores. In principle, this equation, together with 
the equations for up, u, �9 and I+, makes it possible to find f it, p, t), 
and hence the increase in volume. A solution of this system can al- 
ways be found by numerical methods. On the other hand, in certain 
special cases the problem is so simplified that an analytic solution is 

possible. 
Thus, for example, a very important special case is the expan- 

sion of porous materials, i, e . ,  materials that even in the initial state 
have a pore density so great that the gas phase is mainly liberated into 
these pre-existing pores, while the processes of new pore formation do 
not play a very significant part. If the pore fusion processes are also 
on a small scale, the pore density may be regarded as fixed. Apart 
from materials which acquire considerable branched porosity as a 
result of the manufacturing process, this group includes materials 
that, though initially nonporous, have become porous in previous 
stages of expansion. In this case Eq. (1) will lack the still relatively 
obscure terms ~I, it, p, t) and I+. This considerably simplifies the 
determination of ~ (r, p, t). If we neglect the processes of pore dis- 

placement, Eq. (1) assumes the form 

o-F + (%i) = o. (2) 

In this case the total number of pores does not change, and the 
change in the distribution function is related only with the change in 
pore size; therefore the solution of this equation can be expressed in 

terms of the initial distribution function ~ o (P') as follows: 

I (P, t) = 10 (p~ apg~. (3) 

In this case the radius of each pore will be a function of time and 

the initial radius p* and, generally speaking, this relationship will 

take the form 
t 

p it) = V~ + 1 %  ix' o (~)l d r .  (4) 

0 

In particular, as the initial distribution f0 we can use the pore 
distribution observed in one of the previous stages of gaseous expan- 
sion. Moreover, to determine f (p, t), it is necessary, with the help 
of (4), to establish a relation between p, p~ and t. The specific form 
of this relation is determined by the mechanism controlli.ng the growth 
of the pores, since this decides whether the quantity Up is a function 
of the pore radius and t ime or of t ime only. When the gas in the 
pores may be considered perfect, and the growth of the pores is due 
to the now widely accepted mechanism of diffusion flow of vacancies, 

correlated with the flow of gas atoms in such a way that the pore 
pressure is maintained at the pressure level of the surface tension 
forces [2], 

3 D k T  e ( t)  % = - T r -  (5) 

and does not depend on the pore radius [1]. Here D is the diffusion 
coefficient, c it) is the concentration of gas atoms dissolved in 
the material, y is the coefficient of surface tension for the material, 
k is Boltzmann's constant, and T is temperature. In this case from 
Eqs. (4) and (3) it follows that dp = dp*, and f (p, t) = is(p~ We 
now go over to the dimensionless variables x ("radius') and @ ("time").  

t 

x --- ~ ,  �9 = 30k r ~ c (T) e~. (6) 
po 4TOo J 
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Here P0 is 'the minimum nonzero value of the radius encountered 
in the initial distribution. Relation (4) between the initial value of 
the pore radius and its value at time t m a y  be written thus: 

x = z Q + c~. (7) 

In this case the distribution function corresponding to "time" may 
be expressed in terms of the initial distribution f0 as follows: 

/ (:r, O) = l0 (z  - 0 ) .  (8) 

In order to express this solution in terms of the variables @ and t, 
it is necessary to determine c it), which would make it possible to 
find @ it). When gas atoms are created at a constant rate a, the 
concentration c it) will be the solution of the equation 

= a --.4aDo (t) N <p (t)>, N <p (t)> = ~ p] (p, t) alp. (9) d_c 
dt 

0 

Here N is the total number of pores in unit volume, and <pit)> is 
the mean pore radius. The second equation relating the variables c it) 
and pit) is Eq. (5). In this equation Up may also be understood to 
represent, in particular, d <p>/dt, since in the case in question this 
dependence of up on t holds for pores of any radius, and hence for 
<p>. The equation then assumes the form 

3 D k T  . .  d<p>~ = ~ c(U. (10) 

Eliminating c(t) with the help of (10) from Eq. (9), we get the 

nonlinear equation 

d (d<p> ,~ ) 
d-i k ~ + -$ <P>' = [3, 

Integrating, we get 

d <p> a 
dt + 2  < p > ' = ~ t + G  

3 a D k T  
a = 4zcDN,  [~ = 7 - ~  " 

= + <p>,), (11) 

Here the constant of integration G is determined with the help of the 

conditions 

d <p> 3 D k T  co for t = 0. (12) 
<p> ~ <pO>, dt  - -  4T 

By means of the substRution 

t = ~ - ~ ]  x - -  T ,  < 0 > - \ ~  I - ~ - ~ ,  

we can reduce Eq. (11) to a linear equation of the type y" --xy = 0. 
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Its solut ion is expressed in terms of Bessel functions [8]. As a result ,  
we have  

_ { a~kT ~'/, h,, (.9 + el_,/, (~) 
(p (t)) --  \ 8~' fN ] (t~ "4- "r -I- t) V~ ' 1_% (s) + e I . ,  (s) 

( l a )  

f2slaD2NkT'~ % 8~T <p~ N 
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Here r and t ~ are the m e a n  values  of the t i m e  needed to c rea te  
the in i t i a l  numbers of gas a toms in the solution and in  the pores, re-  
spec t ive ly ;  the constant  of in tegra t ion  

I/2G I ~ 1,1+ (so) - -  <p~ t _ , l ,  (so) 
= - -  r  I_, /~(~o)- <po> t,/+(~o) 

is de te rmined  with the help of the first of condi t ions (12). Here s o 
is the va lue  o f s  at  t = 0. 

From this, i nc iden ta l ly ,  it can  be seen tha t  a symp to t i c a l l y  Cat 
l a rge  s) 

<p> ~ (t ~ + ~ + t) '/+, AV ~ (t ~ + "r + t) '".  

Having found <p(t)>, we can  also find i f ( t ) ,  s ince,  in accordance  

with re la t ions  (6) and (10), cI, (t) = (<p (t)> - <P*>)/Po. If  r (t) is 

known, f (p, t) can  be found from Eq. (8). However,  the expansion 

can  be found without hav ing  to first find f (p, t), s ince  the  t i m e  de -  

pendence  of the to ta l  pore volume is expressed d i rec t ly  in terms of 

cb(t) and the first moments  of the in i t i a l  distr ibution function f0 

O3 CO 

4Stpo ~ ~i" 
AV = ~ !~ y ]o(y) dy ~- 3 ~  (0  ~. Y2/o(Y) dy "Jr- 3 '1'~ (t)). 
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If we t ake  into account  the fact  that ,  s tar t ing from a cer ta in  

s tage  of expansion,  the m a t e r i a l  may  be regarded as porous, then 
the  results ob ta ined  enab le  us, in par t icu lar ,  to ex t rapo la te  exper i -  
m e n t a l  data from the region of smal l  to the region of high burnup 

values .  
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